References.

  • Ohira K., Research and development work on liquid hydrogen technologies in Japan’s WE-NET project. Proc 19th Int Cryo Eng Conf (2003), 557-560.
  • Ohira K., A summary of liquid hydrogen and cryogenic technologies in Japan’s WE-NET project. Adv Cryo Eng, Vol. 49A (2004), 27-34.
  • Ohira K., High-efficiency hydrogen energy system using slush hydrogen. Compendium of Hydrogen Utilization Technology, Vol. 4 (NTS Inc., 2014), 301-312. (in Japanese)
  • Ohira K., Slush hydrogen production, storage, and transportation. Compendium of Hydrogen Energy, Vol. 2 (Woodhead Publishing, Elsevier Ltd., 2015), 53-90.
  • Ohira K. et al., Pressure-drop reduction and heat-transfer deterioration of slush nitrogen in triangular and circular pipe flows. Cryogenics, Vol. 81 (2017), 60-75.
  • Ohira K. et al., An experimental investigation of film-condensation heat transfer of hydrogen in a vertical tube. Adv Cryo Eng, Vol. 35A (1990), 421-428.
  • Ohira K., Laminar film condensation heat transfer of hydrogen and nitrogen inside a vertical tube, Heat Transfer-Asian Research, Vol. 30 (2001), No.7, 542-560.
  • Ohira K. et al., The characteristics of magnetic refrigeration operating at the temperature of 20 K. Proc 16th Int Cryo Eng Conf (1996), 403-406.
  • Ohira K. et al., Experimental study on magnetic refrigeration for liquefaction of hydrogen. Adv Cryo Eng, Vol. 45 (2000), 1747-1754.
  • Ohira K. et al., An experimental investigation of production and density measurement of slush hydrogen. Cryogenics, Vol. 34 (1994), 397-400.
  • Ohira K., Study of production technology for slush hydrogen. Adv Cryo Eng, Vol. 49A (2004), 56-63.
  • Ohira K. et al., Development of a high-accuracy capacitance-type densimeter for slush hydrogen. JSME Int J, Ser. B, Vol. 43 (2000), No.2, 162-170.
  • Ohira K. et al., Development of a microwave-type densimeter for slush hydrogen. Cryogenics, Vol. 43 (2003), No. 10-11, 615-620.
  • Ohira K. et al., Study on the development of a capacitance-type flowmeter for slush hydrogen. Cryogenics, Vol. 43 (2003), No. 10-11, 607-613.
  • Ohira K. et al., Development of a waveguide-type flowmeter using a microwave method for slush Hydrogen. JSME Int J, Ser. B, Vol. 48 (2005), No.1, 114-121.
  • Ohira K., Development of density and mass flow rate measurement technologies for slush hydrogen. Cryogenics, Vol. 44 (2004), 59-68.
  • Ohira K., Pressure drop reduction phenomenon of slush nitrogen flow in a horizontal pipe. Cryogenics, Vol. 51 (2011), 389-396.
  • Ohira K. et al., Pressure-drop reduction and heat-transfer deterioration of slush nitrogen in horizontal pipe flow. Cryogenics, Vol. 51 (2011), 563-575.
  • Ohira K. et al., Pressure-drop reduction and heat-transfer deterioration of slush nitrogen in square pipe flow. Physics Procedia, Vol. 67 (2015), 681-686.
  • Ohira K. et al., Pressure-drop reduction and heat-transfer deterioration of slush nitrogen in triangular pipe flow. Proc 24th IIR Int Cong Refrig (2015), ID: 771.
  • Ohira K. et al., Pressure drop of slush nitrogen flow in converging-diverging pipes and corrugated pipes. Cryogenics, Vol. 52 (2012), 771-783.
  • Nozawa M. et al., Flow characteristics of slush nitrogen in various types of pipe. Proc 22nd Int Cryo Eng Conf (2009), 255-260.
  • Ohira K. et al., Numerical study of flow and heat-transfer characteristics of cryogenic slush fluid in a horizontal circular pipe (SLUSH-3D). Cryogenics, Vol. 52 (2012), 428-440.
  • Ohira K. et al., Numerical study of cryogenic slush flow in a horizontal square pipe for a high-efficiency hydrogen energy system (SLUSH-3D). Proc 24th Int Cryo Eng Conf (2013), 105-110. (invited lecture)
  • Ohira K., Study of nucleate boiling heat transfer to slush hydrogen and slush nitrogen. Heat Transfer-Asian Research, Vol. 32 (2003), 13-28.
  • Ohira K. et al., Pressure drop and heat transfer characteristics of boiling liquid nitrogen in a horizontal pipe flow. Proc 23rd Int Cryo Eng Conf (2011), 445-452.
  • Ohira K. et al., Pressure drop and heat transfer characteristics of boiling nitrogen in square pipe flow. Physics Procedia, Vol. 67 (2015), 675-680.
  • Ohira K. et al., Cavitating flow of subcooled liquid nitrogen in a C-D nozzle. Proc 23rd Int Cryo Eng Conf (2011), 281-286.
  • Ohira K. et al., Cavitation flow instability of subcooled liquid nitrogen in converging-diverging nozzles. Cryogenics, Vol. 52 (2012), No. 1, 35-44.
  • Sindt C. F. et al., Slush hydrogen flow characteristics and solid fraction upgrading. Adv Cryo Eng, Vol. 15 (1970), 382-390.