References

  • Ohira K., Research and development work on liquid hydrogen technologies in Japan’s WE-NET project. Proc 19th Int Cryo Eng Conf (2003), 557-560.
  • Ohira K., A summary of liquid hydrogen and cryogenic technologies in Japan’s WE-NET project. Adv Cryo Eng, Vol. 49A (2004), 27-34.
  • Ohira K., High-efficiency hydrogen energy system using slush hydrogen. Compendium of Hydrogen Utilization Technology, Vol. 4 (NTS Inc., 2014), 301-12. (in Japanese)
  • Ohira K., Slush hydrogen production, storage, and transportation. Compendium of Hydrogen Energy, Vol. 2 (Woodhead Publishing, Elsevier Ltd., 2015), 53-90. ISBN: 978-1-78242-362-1
  • Ohira K. et al., Pressure-drop reduction and heat-transfer deterioration of slush nitrogen in triangular and circular pipe flows. Cryogenics, Vol. 81 (2017), 60-75.
  • Ohira K. et al., An experimental investigation of film-condensation heat transfer of hydrogen in a vertical tube. Adv Cryo Eng, Vol. 35A (1990), 421-28.
  • Ohira K., Laminar film condensation heat transfer of hydrogen and nitrogen inside a vertical tube, Heat Transfer-Asian Research, Vol. 30 (2001), No.7, 542-60.
  • Ohira K. et al., The characteristics of magnetic refrigeration operating at the temperature of 20 K. Proc 16th Int Cryo Eng Conf (1996), 403-06.
  • Ohira K. et al., Experimental study on magnetic refrigeration for liquefaction of hydrogen. Adv Cryo Eng, Vol. 45 (2000), 1747-1754.
    Ohira K. et al., Development of magnetic refrigeration at temperature of hydrogen liquefaction. Mitsubishi Heavy Industries Technical Report, Vol. 36 (1999-11), No. 6, 324-27. (in Japanese)
  • Ohira K. et al., An experimental investigation of production and density measurement of slush hydrogen. Cryogenics, Vol. 34 (1994), 397-400.
  • Ohira K., Study of production technology for slush hydrogen. Adv Cryo Eng, Vol. 49A (2004), 56-63.
  • Ohira K. et al., Development of a high-accuracy capacitance-type densimeter for slush hydrogen. JSME Int J, Ser. B, Vol. 43 (2000), No.2, 162-70.
  • Ohira K. et al., Development of a microwave-type densimeter for slush hydrogen. Cryogenics, Vol. 43 (2003), No. 10-11, 615-20.
  • Ohira K. et al., Study on the development of a capacitance-type flowmeter for slush hydrogen. Cryogenics, Vol. 43 (2003), No. 10-11, 607-13.
  • Ohira K. et al., Development of a waveguide-type flowmeter using a microwave method for slush Hydrogen. JSME Int J, Ser. B, Vol. 48 (2005), No.1, 114-21.
  • Ohira K., Development of density and mass flow rate measurement technologies for slush hydrogen. Cryogenics, Vol. 44 (2004), 59-68.
  • Ohira K., Pressure drop reduction phenomenon of slush nitrogen flow in a horizontal pipe. Cryogenics, Vol. 51 (2011), 389-96.
  • Ohira K. et al., Pressure-drop reduction and heat-transfer deterioration of slush nitrogen in horizontal pipe flow. Cryogenics, Vol. 51 (2011), 563-75.
  • Ohira K. et al., Pressure-drop reduction and heat-transfer deterioration of slush nitrogen in square pipe flow. Physics Procedia, Vol. 67 (2015), 681-86.
  • Ohira K. et al., Pressure-drop reduction and heat-transfer deterioration of slush nitrogen in triangular pipe flow. Proc 24th IIR Int Cong Refrig (2015), ID: 771.
  • Ohira K. et al., Pressure drop of slush nitrogen flow in converging-diverging pipes and corrugated pipes. Cryogenics, Vol. 52 (2012), 771-83.
  • Nozawa M. et al., Flow characteristics of slush nitrogen in various types of pipe. Proc 22nd Int Cryo Eng Conf (2009), 255-60.
  • Ohira K. et al., Numerical study of flow and heat-transfer characteristics of cryogenic slush fluid in a horizontal circular pipe (SLUSH-3D). Cryogenics, Vol. 52 (2012), 428-40.
  • Ohira K. et al., Numerical study of cryogenic slush flow in a horizontal square pipe for a high-efficiency hydrogen energy system (SLUSH-3D). Proc 24th Int Cryo Eng Conf (2013), 105-10. (invited lecture)
  • Ohira K., Study of nucleate boiling heat transfer to slush hydrogen and slush nitrogen. Heat Transfer-Asian Research, Vol. 32 (2003), 13-28.
  • Ohira K. et al., Pressure drop and heat transfer characteristics of boiling liquid nitrogen in a horizontal pipe flow. Proc 23rd Int Cryo Eng Conf (2011), 445-52.
  • Ohira K. et al., Pressure drop and heat transfer characteristics of boiling nitrogen in square pipe flow. Physics Procedia, Vol. 67 (2015), 675-80.
  • Ohira K. et al., Cavitating flow of subcooled liquid nitrogen in a C-D nozzle. Proc 23rd Int Cryo Eng Conf (2011), 281-86.
  • Ohira K. et al., Cavitation flow instability of subcooled liquid nitrogen in converging-diverging nozzles. Cryogenics, Vol. 52 (2012), No. 1, 35-44.
  • Sindt C. F. et al., Slush hydrogen flow characteristics and solid fraction upgrading. Adv Cryo Eng, Vol. 15 (1970), 382-90.
  • Frost W. ed., Heat transfer at low temperatures. Plenum Press, New York (1975), 107-141, 203-212.
  • Rapposelli E. et al., A barotropic cavitation model with thermodynamic effects. 5th international symposium on cavitation (2003), Cav03-GS-16-004.
  • Schlichting H., Boundary-layer theory, translated by Kestin J. McGraw-Hill Book, New York (1968), 560-95.
  • Winterton R. H. S., Thermal design of nuclear reactors, Pergamon Press, New York (1981).
  • Khalil A., et al., Experimental measurement of void fraction in cryogenic two phase upward flow. Cryogenics, Vol. 21 (1981), 411-14.
  • Butterworth D., A comparison of some void-fraction relationships for co-current gas-liquid flow. Int. J. Multiphase Flow, Vol. 1 (1975), 845-50.
  • Tollefsen J. et al., Capacitance sensor design for reducing errors in phase concentration measurements. Flow Measurement and Instrumentation, Vol. 9 (1998), 25-32.
  • Gungor K. E., Winterton R. H. S., Simplified general correlation for saturated flow boiling and comparisons of correlations with data. Chem. Eng. Res. Des., Vol. 65 (1987), 148-56.
  • Liu Z., Winterton R. H. S., A general correlation for saturated and subcooled flow boiling in tubes and annuli based on a nucleate pool boiling equation. Int. J. Heat Mass Transfer, Vol. 34 (1991), 2759-66.
  • Schrock V. E., Grossman L. M., Forced convection boiling in tubes. Nuc. Sci. Eng., Vol. 12 (1962), 474-81.
  • Chen J. C., Correlation for boiling heat transfer to saturated liquids in convective flow. Ind. Eng. Chem. Proc. Des. Dev., Vol. 5 (1966), 322-29.
  • Ohira K, et al., Void fraction measurement, pressure drop and heat transfer for boiling nitrogen flow in a horizontal circular pipe. Proc. Multiphase Flow Symposium 2014 of the Japanese Society for Multiphase Flow, (2014), Paper ID: C144. (in Japanese)
  • Ohira K., et al., Pressure drop and heat transfer characteristics of two-phase boiling nitrogen triangular pipe flow. International Workshop on Cooling System for HTS Applications (IWC-HTS) 2015, (2015), Paper ID: OR4-06.
  • Chisholm D., A theoretical basis for the Lockhart-Martinelli correlation for two-phase flow. Int. J. Heat and Mass Transfer, Vol. 10 (1967), 1767-78.
  • Levy S., Forced convection subcooled boiling - Prediction of vapor volumetric fraction. Int. J. Heat and Mass Transfer, Vol. 10 (1967), 951-65.
  • Woldesemayat M. A. et al., Comparison of void fraction correlations for different flow patterns in horizontal and upward inclined pipes. Int. J. Multiphase Flow, Vol. 33 (2007), 347-70.
  • Kadambi V., Void fraction and pressure drop in two-phase stratifiedflow. Can. J. Chem. Engng., Vol. 59 (1981), 584-89.
  • Kandlikar S. G., A general correlation for saturated two-phase flow boiling heat trnsfer inside horizontal and vertical tubes. J. Heat Transfer, Vol. 112 (1990), 219-28.
  • Steiner D., Heat transfer during flow boiling of cryogenic fluids in vertical and horizontal tubes. Cryogenics, Vol. 26 (1986), 309-18.